מעבר לתוכן

שאלה לגבי הוכחת משפט במטריצות (עדכון - הסעיף המתוקן )


Lior A

הודעות מומלצות

בוקר טוב לכולם ,

 

השאלה ( מדובר על סעיף ב ) , והתשובה שלי מצורפות .

 

אני רק רוצה לדעת אם התשובה נכונה . במקרה ולא - אני אסתפק ברמזים והכוונות ולא פתרון .(הרי אם אני לא אפתור לבד - תמשיכו לבד ..)

 

post-302-135560905403_thumb.jpg

post-302-135560905417_thumb.jpg

קישור לתוכן
שיתוף באתרים אחרים

ממש קשה לראות מה כתוב בתמונה.

לא הבנתי למה בשורה הראשונה הכפלת ב-B רק אגף אחד.

 

 

בכל אופן הפתרון הוא שלוש שורות

 

 

אתה צריך להכפיל מימין את שתי האגפים ב- (I+BA) ומשמאל ב- (I+AB)

ואז אתה נפתר מההופכי וכשתפתח את הסוגריים תקבל את אותו הדבר בשני האגפים (A+ABA)

קישור לתוכן
שיתוף באתרים אחרים

*במעבר הראשון - כפלת ב-B אבל האיבר נעלם בשורה הבאה. אבל זה לא אמור לשנות, בעקרון, בשביל הגישה שלך.

*במשוואה האחרונה כתבת AB^-1 כאשר אני בטוח שהכוונה היא ל-

d  (AB)^-1

כדאי לסמן זאת בהתאם כדי לא להתבלבל עם

A(B^-1)  d

 

 

(d למטרות יישור בלבד, לא חלק מהביטוי)

*משהו מרגיש לי חשוד פה, נניח ויש שתי מטריצות ריבועיות מסדר 2 - A היא מטריצת היחידה, ו-B היא מטריצת היחידה בהחלפת עמודות. המכפלה שלהן היא B והיא הפיכה והכל טוב, ואז (לביטויים בסוגריים) אם מוסיפים I מקבלים מטריצה שכולה אחדות - וזו בלתי הפיכה.

לביטוי הנתון זה לא מפריע, כי אותו גורם נמצא בשני צידי המשוואה - אבל זה משתנה עם האלגברה שאתה עושה בהמשך ונעשה בעייתי.

 

 

נ.ב - האלגברה שלי מאוד חלודה.

קישור לתוכן
שיתוף באתרים אחרים

יש פה משהו בעייתי, כי אפשר למצוא שתי מטריצות A ו-B כך שהביטוי הזה בכלל לא יהיה קיים (I+AB לא יהיה הפיך) למרות ש-AB הפיכה.
קישור לתוכן
שיתוף באתרים אחרים

ראדה, ראה מה שכתבתי  :mrgreen:

(אם שני צדי השוויון לא-קיימים זה בסדר. עוד אין לי מושג איך להתייחס לשלבי הביניים שאינקוג הציע, אבל אני פיזיקאי, אני מוכן לנפנף ידיים)

קישור לתוכן
שיתוף באתרים אחרים

ברור שאם (I+BA) לא הפיכה או (I+AB) לא הפיכה אז הביטוי חסר משמעות.

 

אבל כפי שזה כתוב הן כן הפיכות.

אין כאן גם הוכח הפרך (אם היה הוכח הפרך זה היה בסגנון האם I+AB גם כן הפיכה).

ברגע שכותבים לך מטריצה בחזקת מינוס 1 , ההנחה היא שהיא הפיכה.

קישור לתוכן
שיתוף באתרים אחרים

לא הפתרון שלך שלא לא נכון, כמו שאמרתי מקודם ברגע שאתה כותב:

(I+BA)^-1)  אתה כבר יוצא מתוך נקודת הנחה שזו מטריצה הפיכה וזה בדיוק מה שאתה צריך להוכיח.

לכן הנחת את מה שהיית צריך להוכיח מראש.

 

אתה קודם צריך להוכיח ש: I+BA הפיכה, ורק אז להוכיח את הנוסחא (שאת זה עושים באופן שאותו כתבתי בהודעה הראשונה).

 

אם אתה רוצה פתרון לגבי איך להוכיח ש- I+BA הפיכה:

 

תזכור שמכפלה של מטריצות הפיכות היא גם כן הפיכה, תסתכל על: A^-1(I+AB)A = I+BA

הצגת את המטריצה שלך כמכפלה של מטריצות הפיכות (על פי הנתון) ולכן היא גם כן הפיכה.

 

 

 

קישור לתוכן
שיתוף באתרים אחרים

לא קראת את ההודעה האחרונה עד הסוף .. ( נראה לי )

 

" הוכח שאם המטריצות A ,  (I+AB) V הפיכות --> אז המטריצה  (I+BA) V ,  הפיכה גם היא , ומתקיים :

  (I+AB)^-1A=A(I+BA)^-1  .

 

מדובר בסעיף שונה לגמרי , מצטער על הטעות ( אמנם שלא באשמתי , ועדיין ..)

 

נתון ש I+AB  הפיכה ..

 

עריכה :

 

הלוא אם I+BA ^-1  הפיכה הרי שגם I+BA הפיכה ? ( אני יכול לשלוף משפט ) שהרי :

 

A * A^-1 = I

קישור לתוכן
שיתוף באתרים אחרים

הבנתי את זה, אבל נתון לך ש- I+AB הפיכה, לא ש: I+BA הפיכה.

אתה קודם כל צריך להוכיח זאת.

עכשיו מה שעשית זה יצאת מתוך ביטוי שבו כבר מניחים ששתי המטריצות הפיכות, ואז אתה מניח את המבוקש.

רק אחרי שתוכיח את הטענה לביטוי הזה תהיה משמעות.

 

 

 

 

קישור לתוכן
שיתוף באתרים אחרים

כן נכון ..

 

אבל האם X * Y = I  , לא מצביע על כך ששתיהן הופכיות משמע Y = X^-1 .  (?)

 

זה נכלל במשפטים שהוכחנו בעבר ( וע"פ כן - לא נדרש להוכיחם ונוכל "להשען" עליהם)

 

עריכה :

 

תודה על העזרה והסבלנות ..

 

קישור לתוכן
שיתוף באתרים אחרים

זה כמובן נכון אבל שים לב שזה לא מה שקיבלת, מה שקיבלת זה לא ביטוי מהצורה:

I=B*C , אלא ביטוי מהצורה:

I=D*B*C

ואתה רוצה להוכיח ש-B הפיכה.

אז זה עדיין נכון ש-B הפיכה אבל צריך לתרץ זאת...

 

בכל אופן אם אתה רוצה לבחור בדרך הזאת פשוט תשאיר רק את השורה האחרונה שכתבת (שבה באמת לא מופיע (I+AB)^-1)  ככה שזה בסדר).

 

קישור לתוכן
שיתוף באתרים אחרים

הצטרפות לשיח

באפשרותך לשלוח הודעה כעת ולהירשם מאוחר יותר. אם ברשותך חשבון, ניתן להתחבר עכשיו לשליחת הודעה דרך חשבונך.
הערה: הודעתך דרושה לאישור הנהלה לפני הצגתה.

אורח
הוספת תגובה

×   הדבקה כטקסט עשיר.   הדבקה כטקסט רגיל במקום

  מאושרים אך ורק 75 סמייקונים.

×   הקישור שלך מוצמד אוטומטית.   הצגה כקישור במקום

×   תוכן הקודם שלכם שוחזר.   ניקוי עורך

×   You cannot paste images directly. Upload or insert images from URL.

טוען...
×
×
  • יצירת חדש...